home *** CD-ROM | disk | FTP | other *** search
open in:
MacOS 8.1
|
Win98
|
DOS
browse contents |
view JSON data
|
view as text
This file was processed as: LaTeX Document
(document/latex).
Confidence | Program | Detection | Match Type | Support
|
---|
100%
| dexvert
| LaTeX Document (document/latex)
| magic
| Supported |
90%
| dexvert
| Hypertext Markup Language File (text/html)
| magic
| Supported |
1%
| dexvert
| Text File (text/txt)
| fallback
| Supported |
100%
| file
| HTML document text
| default (weak)
| |
99%
| file
| LaTeX document text
| default
| |
98%
| file
| exported SGML document text
| default
| |
97%
| file
| exported SGML document, ASCII text, with very long lines (358)
| default
| |
80%
| TrID
| HyperText Markup Language with DOCTYPE
| default
| |
19%
| TrID
| HyperText Markup Language
| default
| |
100%
| checkBytes
| Printable ASCII
| default
| |
100%
| perlTextCheck
| Likely Text (Perl)
| default
| |
100%
| siegfried
| fmt/281 LaTeX (Subdocument)
| default
| |
100%
| gt2
| HTML (Hyper Text Markup Language) Datei
| default
| |
100%
| detectItEasy
| Format: plain text[LF]
| default (weak)
| |
100%
| xdgMime
| text/html
| default
|
|
hex view+--------+-------------------------+-------------------------+--------+--------+
|00000000| 3c 21 44 4f 43 54 59 50 | 45 20 48 54 4d 4c 20 50 |<!DOCTYP|E HTML P|
|00000010| 55 42 4c 49 43 20 22 2d | 2f 2f 57 33 43 2f 2f 44 |UBLIC "-|//W3C//D|
|00000020| 54 44 20 48 54 4d 4c 20 | 33 2e 32 20 46 69 6e 61 |TD HTML |3.2 Fina|
|00000030| 6c 2f 2f 65 6e 22 3e 0a | 0a 3c 21 2d 2d 43 6f 6e |l//en">.|.<!--Con|
|00000040| 76 65 72 74 65 64 20 77 | 69 74 68 20 4c 61 54 65 |verted w|ith LaTe|
|00000050| 58 32 48 54 4d 4c 20 32 | 30 32 32 20 28 52 65 6c |X2HTML 2|022 (Rel|
|00000060| 65 61 73 65 64 20 4a 61 | 6e 75 61 72 79 20 31 2c |eased Ja|nuary 1,|
|00000070| 20 32 30 32 32 29 20 2d | 2d 3e 0a 3c 48 54 4d 4c | 2022) -|->.<HTML|
|00000080| 20 6c 61 6e 67 3d 22 65 | 6e 22 3e 0a 3c 48 45 41 | lang="e|n">.<HEA|
|00000090| 44 3e 0a 3c 54 49 54 4c | 45 3e 43 6f 6e 74 65 6e |D>.<TITL|E>Conten|
|000000a0| 74 73 20 6f 66 20 61 6e | 73 31 5f 63 74 3c 2f 54 |ts of an|s1_ct</T|
|000000b0| 49 54 4c 45 3e 0a 0a 3c | 4d 45 54 41 20 48 54 54 |ITLE>..<|META HTT|
|000000c0| 50 2d 45 51 55 49 56 3d | 22 43 6f 6e 74 65 6e 74 |P-EQUIV=|"Content|
|000000d0| 2d 54 79 70 65 22 20 43 | 4f 4e 54 45 4e 54 3d 22 |-Type" C|ONTENT="|
|000000e0| 74 65 78 74 2f 68 74 6d | 6c 3b 20 63 68 61 72 73 |text/htm|l; chars|
|000000f0| 65 74 3d 75 74 66 2d 38 | 22 3e 0a 3c 4d 45 54 41 |et=utf-8|">.<META|
|00000100| 20 4e 41 4d 45 3d 22 76 | 69 65 77 70 6f 72 74 22 | NAME="v|iewport"|
|00000110| 20 43 4f 4e 54 45 4e 54 | 3d 22 77 69 64 74 68 3d | CONTENT|="width=|
|00000120| 64 65 76 69 63 65 2d 77 | 69 64 74 68 2c 20 69 6e |device-w|idth, in|
|00000130| 69 74 69 61 6c 2d 73 63 | 61 6c 65 3d 31 2e 30 22 |itial-sc|ale=1.0"|
|00000140| 3e 0a 3c 4d 45 54 41 20 | 4e 41 4d 45 3d 22 47 65 |>.<META |NAME="Ge|
|00000150| 6e 65 72 61 74 6f 72 22 | 20 43 4f 4e 54 45 4e 54 |nerator"| CONTENT|
|00000160| 3d 22 4c 61 54 65 58 32 | 48 54 4d 4c 20 76 32 30 |="LaTeX2|HTML v20|
|00000170| 32 32 22 3e 0a 0a 3c 4c | 49 4e 4b 20 52 45 4c 3d |22">..<L|INK REL=|
|00000180| 22 53 54 59 4c 45 53 48 | 45 45 54 22 20 48 52 45 |"STYLESH|EET" HRE|
|00000190| 46 3d 22 61 6e 73 31 5f | 63 74 2e 63 73 73 22 3e |F="ans1_|ct.css">|
|000001a0| 0a 0a 3c 2f 48 45 41 44 | 3e 0a 20 0a 3c 42 4f 44 |..</HEAD|>. .<BOD|
|000001b0| 59 20 62 67 63 6f 6c 6f | 72 3d 22 23 66 66 66 66 |Y bgcolo|r="#ffff|
|000001c0| 66 66 22 20 74 65 78 74 | 3d 22 23 30 30 30 30 30 |ff" text|="#00000|
|000001d0| 30 22 20 6c 69 6e 6b 3d | 22 23 39 39 34 34 45 45 |0" link=|"#9944EE|
|000001e0| 22 20 76 6c 69 6e 6b 3d | 22 23 30 30 30 30 66 66 |" vlink=|"#0000ff|
|000001f0| 22 20 61 6c 69 6e 6b 3d | 22 23 30 30 66 66 30 30 |" alink=|"#00ff00|
|00000200| 22 3e 0a 0a 26 6c 74 3b | 21 44 4f 43 54 59 50 45 |">..<|!DOCTYPE|
|00000210| 20 48 54 4d 4c 20 50 55 | 42 4c 49 43 20 22 2d 2f | HTML PU|BLIC "-/|
|00000220| 2f 57 33 43 2f 2f 44 54 | 44 20 48 54 4d 4c 20 33 |/W3C//DT|D HTML 3|
|00000230| 2e 32 20 46 69 6e 61 6c | 2f 2f 65 6e 22 26 67 74 |.2 Final|//en">|
|00000240| 3b 0a 0a 3c 50 3e 0a 26 | 6c 74 3b 21 26 6e 64 61 |;..<P>.&|lt;!&nda|
|00000250| 73 68 3b 43 6f 6e 76 65 | 72 74 65 64 20 77 69 74 |sh;Conve|rted wit|
|00000260| 68 20 4c 61 54 65 58 32 | 48 54 4d 4c 20 32 30 32 |h LaTeX2|HTML 202|
|00000270| 32 20 28 52 65 6c 65 61 | 73 65 64 20 4a 61 6e 75 |2 (Relea|sed Janu|
|00000280| 61 72 79 20 31 2c 20 32 | 30 32 32 29 20 26 6e 64 |ary 1, 2|022) &nd|
|00000290| 61 73 68 3b 26 67 74 3b | 0a 26 6c 74 3b 48 54 4d |ash;>|.<HTM|
|000002a0| 4c 20 6c 61 6e 67 3d 22 | 65 6e 22 26 67 74 3b 0a |L lang="|en">.|
|000002b0| 26 6c 74 3b 48 45 41 44 | 26 67 74 3b 0a 26 6c 74 |<HEAD|>.<|
|000002c0| 3b 54 49 54 4c 45 26 67 | 74 3b 43 6f 6e 74 65 6e |;TITLE&g|t;Conten|
|000002d0| 74 73 20 6f 66 20 61 6e | 73 31 26 6c 74 3b 2f 54 |ts of an|s1</T|
|000002e0| 49 54 4c 45 26 67 74 3b | 0a 0a 3c 50 3e 0a 26 6c |ITLE>|..<P>.&l|
|000002f0| 74 3b 4d 45 54 41 20 48 | 54 54 50 2d 45 51 55 49 |t;META H|TTP-EQUI|
|00000300| 56 3d 22 43 6f 6e 74 65 | 6e 74 2d 54 79 70 65 22 |V="Conte|nt-Type"|
|00000310| 20 43 4f 4e 54 45 4e 54 | 3d 22 74 65 78 74 2f 68 | CONTENT|="text/h|
|00000320| 74 6d 6c 3b 20 63 68 61 | 72 73 65 74 3d 75 74 66 |tml; cha|rset=utf|
|00000330| 2d 38 22 26 67 74 3b 0a | 26 6c 74 3b 4d 45 54 41 |-8">.|<META|
|00000340| 20 4e 41 4d 45 3d 22 76 | 69 65 77 70 6f 72 74 22 | NAME="v|iewport"|
|00000350| 20 43 4f 4e 54 45 4e 54 | 3d 22 77 69 64 74 68 3d | CONTENT|="width=|
|00000360| 64 65 76 69 63 65 2d 77 | 69 64 74 68 2c 20 69 6e |device-w|idth, in|
|00000370| 69 74 69 61 6c 2d 73 63 | 61 6c 65 3d 31 2e 30 22 |itial-sc|ale=1.0"|
|00000380| 26 67 74 3b 0a 26 6c 74 | 3b 4d 45 54 41 20 4e 41 |>.<|;META NA|
|00000390| 4d 45 3d 22 47 65 6e 65 | 72 61 74 6f 72 22 20 43 |ME="Gene|rator" C|
|000003a0| 4f 4e 54 45 4e 54 3d 22 | 4c 61 54 65 58 32 48 54 |ONTENT="|LaTeX2HT|
|000003b0| 4d 4c 20 76 32 30 32 32 | 22 26 67 74 3b 0a 0a 3c |ML v2022|">..<|
|000003c0| 50 3e 0a 26 6c 74 3b 4c | 49 4e 4b 20 52 45 4c 3d |P>.<L|INK REL=|
|000003d0| 22 53 54 59 4c 45 53 48 | 45 45 54 22 20 48 52 45 |"STYLESH|EET" HRE|
|000003e0| 46 3d 22 61 6e 73 31 2e | 63 73 73 22 26 67 74 3b |F="ans1.|css">|
|000003f0| 0a 0a 3c 50 3e 0a 26 6c | 74 3b 2f 48 45 41 44 26 |..<P>.&l|t;/HEAD&|
|00000400| 67 74 3b 0a 0a 3c 50 3e | 0a 26 6c 74 3b 42 4f 44 |gt;..<P>|.<BOD|
|00000410| 59 20 62 67 63 6f 6c 6f | 72 3d 22 23 66 66 66 66 |Y bgcolo|r="#ffff|
|00000420| 66 66 22 20 74 65 78 74 | 3d 22 23 30 30 30 30 30 |ff" text|="#00000|
|00000430| 30 22 20 6c 69 6e 6b 3d | 22 23 39 39 34 34 45 45 |0" link=|"#9944EE|
|00000440| 22 20 76 6c 69 6e 6b 3d | 22 23 30 30 30 30 66 66 |" vlink=|"#0000ff|
|00000450| 22 20 61 6c 69 6e 6b 3d | 22 23 30 30 66 66 30 30 |" alink=|"#00ff00|
|00000460| 22 26 67 74 3b 0a 0a 3c | 50 3e 0a 26 6c 74 3b 50 |">..<|P>.<P|
|00000470| 26 67 74 3b 0a 43 68 61 | 70 74 65 72 20 32 3a 20 |>.Cha|pter 2: |
|00000480| 41 6e 73 77 65 72 73 20 | 31 20 4a 61 63 6b 20 4b |Answers |1 Jack K|
|00000490| 2e 20 43 6f 68 65 6e 20 | 43 6f 6c 6f 72 61 64 6f |. Cohen |Colorado|
|000004a0| 20 53 63 68 6f 6f 6c 20 | 6f 66 20 4d 69 6e 65 73 | School |of Mines|
|000004b0| 0a 0a 3c 50 3e 0a 26 6c | 74 3b 50 26 67 74 3b 0a |..<P>.&l|t;P>.|
|000004c0| 0a 3c 50 3e 0a 26 6c 74 | 3b 4f 4c 26 67 74 3b 0a |.<P>.<|;OL>.|
|000004d0| 26 6c 74 3b 4c 49 26 67 | 74 3b 26 6c 74 3b 50 26 |<LI&g|t;<P&|
|000004e0| 67 74 3b 0a 0a 3c 50 3e | 0a 26 6c 74 3b 44 49 56 |gt;..<P>|.<DIV|
|000004f0| 20 63 6c 61 73 73 3d 22 | 43 45 4e 54 45 52 22 26 | class="|CENTER"&|
|00000500| 67 74 3b 26 6c 74 3b 41 | 20 49 44 3d 22 38 22 26 |gt;<A| ID="8"&|
|00000510| 67 74 3b 26 6c 74 3b 2f | 41 26 67 74 3b 0a 26 6c |gt;</|A>.&l|
|00000520| 74 3b 54 41 42 4c 45 26 | 67 74 3b 0a 26 6c 74 3b |t;TABLE&|gt;.<|
|00000530| 43 41 50 54 49 4f 4e 20 | 63 6c 61 73 73 3d 22 42 |CAPTION |class="B|
|00000540| 4f 54 54 4f 4d 22 26 67 | 74 3b 26 6c 74 3b 53 54 |OTTOM"&g|t;<ST|
|00000550| 52 4f 4e 47 26 67 74 3b | 46 69 67 75 72 65 3a 26 |RONG>|Figure:&|
|00000560| 6c 74 3b 2f 53 54 52 4f | 4e 47 26 67 74 3b 0a 55 |lt;/STRO|NG>.U|
|00000570| 70 73 20 61 6e 64 20 64 | 6f 77 6e 73 20 69 6e 20 |ps and d|owns in |
|00000580| 61 20 62 61 6c 6c 6f 6f | 6e 2e 26 6c 74 3b 2f 43 |a balloo|n.</C|
|00000590| 41 50 54 49 4f 4e 26 67 | 74 3b 0a 26 6c 74 3b 54 |APTION&g|t;.<T|
|000005a0| 52 26 67 74 3b 26 6c 74 | 3b 54 44 26 67 74 3b 26 |R><|;TD>&|
|000005b0| 6c 74 3b 49 4d 47 0a 20 | 53 54 59 4c 45 3d 22 68 |lt;IMG. |STYLE="h|
|000005c0| 65 69 67 68 74 3a 20 32 | 38 36 2e 37 36 65 78 3b |eight: 2|86.76ex;|
|000005d0| 20 22 20 53 52 43 3d 22 | 69 6d 67 31 2e 70 6e 67 | " SRC="|img1.png|
|000005e0| 22 0a 20 41 4c 54 3d 22 | 0a 3c 44 49 56 20 63 6c |". ALT="|.<DIV cl|
|000005f0| 61 73 73 3d 22 43 45 4e | 54 45 52 22 3e 0a 3c 49 |ass="CEN|TER">.<I|
|00000600| 4d 47 0a 20 53 54 59 4c | 45 3d 22 68 65 69 67 68 |MG. STYL|E="heigh|
|00000610| 74 3a 20 33 31 34 2e 30 | 30 65 78 3b 20 22 20 53 |t: 314.0|0ex; " S|
|00000620| 52 43 3d 22 69 6d 67 31 | 2e 70 6e 67 22 0a 20 41 |RC="img1|.png". A|
|00000630| 4c 54 3d 22 5c 62 65 67 | 69 6e 7b 66 69 67 75 72 |LT="\beg|in{figur|
|00000640| 65 7d 5c 65 70 73 66 79 | 73 69 7a 65 20 31 33 30 |e}\epsfy|size 130|
|00000650| 70 74 0a 5c 63 65 6e 74 | 65 72 6c 69 6e 65 7b 5c |pt.\cent|erline{\|
|00000660| 65 70 73 66 66 69 6c 65 | 7b 61 6e 73 31 70 31 2e |epsffile|{ans1p1.|
|00000670| 65 70 73 7d 7d 0a 5c 65 | 6e 64 7b 66 69 67 75 72 |eps}}.\e|nd{figur|
|00000680| 65 7d 22 3e 0a 3c 2f 44 | 49 56 3e 22 26 67 74 3b |e}">.</D|IV>">|
|00000690| 26 6c 74 3b 2f 54 44 26 | 67 74 3b 26 6c 74 3b 2f |</TD&|gt;</|
|000006a0| 54 52 26 67 74 3b 0a 26 | 6c 74 3b 2f 54 41 42 4c |TR>.&|lt;/TABL|
|000006b0| 45 26 67 74 3b 0a 26 6c | 74 3b 2f 44 49 56 26 67 |E>.&l|t;/DIV&g|
|000006c0| 74 3b 0a 0a 3c 50 3e 0a | 26 6c 74 3b 50 26 67 74 |t;..<P>.|<P>|
|000006d0| 3b 0a 0a 3c 50 3e 0a 26 | 6c 74 3b 4f 4c 26 67 74 |;..<P>.&|lt;OL>|
|000006e0| 3b 0a 26 6c 74 3b 4c 49 | 26 67 74 3b 53 65 65 20 |;.<LI|>See |
|000006f0| 46 69 67 75 72 65 20 31 | 2e 0a 26 6c 74 3b 2f 4c |Figure 1|..</L|
|00000700| 49 26 67 74 3b 0a 26 6c | 74 3b 4c 49 26 67 74 3b |I>.&l|t;LI>|
|00000710| 59 6f 75 72 20 74 65 78 | 74 62 6f 6f 6b 20 68 61 |Your tex|tbook ha|
|00000720| 73 20 61 6e 20 69 6e 64 | 65 78 2e 0a 26 6c 74 3b |s an ind|ex..<|
|00000730| 2f 4c 49 26 67 74 3b 0a | 26 6c 74 3b 4c 49 26 67 |/LI>.|<LI&g|
|00000740| 74 3b 54 68 65 20 73 6c | 6f 70 65 20 69 73 20 70 |t;The sl|ope is p|
|00000750| 6f 73 69 74 69 76 65 20 | 69 6e 20 74 68 65 20 69 |ositive |in the i|
|00000760| 6e 74 65 72 76 61 6c 73 | 20 26 6c 74 3b 21 26 6e |ntervals| <!&n|
|00000770| 64 61 73 68 3b 20 4d 41 | 54 48 0a 20 3c 21 2d 2d |dash; MA|TH. <!--|
|00000780| 20 4d 41 54 48 0a 20 24 | 28 61 2c 41 29 2c 20 28 | MATH. $|(a,A), (|
|00000790| 62 2c 20 42 29 24 0a 20 | 2d 2d 3e 0a 28 3c 49 3e |b, B)$. |-->.(<I>|
|000007a0| 61 3c 2f 49 3e 2c 20 3c | 49 3e 41 3c 2f 49 3e 29 |a</I>, <|I>A</I>)|
|000007b0| 2c 28 3c 49 3e 62 3c 2f | 49 3e 2c 20 3c 49 3e 42 |,(<I>b</|I>, <I>B|
|000007c0| 3c 2f 49 3e 29 0a 20 26 | 6e 64 61 73 68 3b 26 67 |</I>). &|ndash;&g|
|000007d0| 74 3b 0a 28 26 6c 74 3b | 49 26 67 74 3b 61 26 6c |t;.(<|I>a&l|
|000007e0| 74 3b 2f 49 26 67 74 3b | 2c 20 26 6c 74 3b 49 26 |t;/I>|, <I&|
|000007f0| 67 74 3b 41 26 6c 74 3b | 2f 49 26 67 74 3b 29 2c |gt;A<|/I>),|
|00000800| 28 26 6c 74 3b 49 26 67 | 74 3b 62 26 6c 74 3b 2f |(<I&g|t;b</|
|00000810| 49 26 67 74 3b 2c 20 26 | 6c 74 3b 49 26 67 74 3b |I>, &|lt;I>|
|00000820| 42 26 6c 74 3b 2f 49 26 | 67 74 3b 29 20 61 6e 64 |B</I&|gt;) and|
|00000830| 20 28 26 6c 74 3b 49 26 | 67 74 3b 63 26 6c 74 3b | (<I&|gt;c<|
|00000840| 2f 49 26 67 74 3b 2c 20 | 26 6c 74 3b 49 26 67 74 |/I>, |<I>|
|00000850| 3b 43 26 6c 74 3b 2f 49 | 26 67 74 3b 29 2e 20 20 |;C</I|>). |
|00000860| 54 68 65 73 65 20 61 72 | 65 20 69 6e 64 65 65 64 |These ar|e indeed|
|00000870| 20 74 68 65 20 73 61 6d | 65 20 61 73 20 74 68 65 | the sam|e as the|
|00000880| 20 69 6e 74 65 72 76 61 | 6c 73 20 77 68 65 72 65 | interva|ls where|
|00000890| 20 74 68 65 20 66 75 6e | 63 74 69 6f 6e 20 69 73 | the fun|ction is|
|000008a0| 20 69 6e 63 72 65 61 73 | 69 6e 67 2e 0a 26 6c 74 | increas|ing..<|
|000008b0| 3b 2f 4c 49 26 67 74 3b | 0a 26 6c 74 3b 4c 49 26 |;/LI>|.<LI&|
|000008c0| 67 74 3b 5a 65 72 6f 2e | 0a 26 6c 74 3b 2f 4c 49 |gt;Zero.|.</LI|
|000008d0| 26 67 74 3b 0a 26 6c 74 | 3b 4c 49 26 67 74 3b 49 |>.<|;LI>I|
|000008e0| 66 20 74 68 65 20 73 6c | 6f 70 65 20 69 73 20 70 |f the sl|ope is p|
|000008f0| 6f 73 69 74 69 76 65 20 | 69 6e 20 61 6e 20 69 6e |ositive |in an in|
|00000900| 74 65 72 76 61 6c 20 74 | 6f 20 74 68 65 20 6c 65 |terval t|o the le|
|00000910| 66 74 20 6f 66 20 61 20 | 70 6f 69 6e 74 20 61 6e |ft of a |point an|
|00000920| 64 20 69 73 20 6e 65 67 | 61 74 69 76 65 20 69 6e |d is neg|ative in|
|00000930| 20 61 6e 20 69 6e 74 65 | 72 76 61 6c 20 74 6f 20 | an inte|rval to |
|00000940| 74 68 65 20 72 69 67 68 | 74 20 6f 66 20 74 68 69 |the righ|t of thi|
|00000950| 73 20 70 6f 69 6e 74 2c | 20 74 68 65 6e 20 74 68 |s point,| then th|
|00000960| 65 20 70 6f 69 6e 74 20 | 67 69 76 65 73 20 61 20 |e point |gives a |
|00000970| 6c 6f 63 61 6c 20 6d 61 | 78 69 6d 75 6d 2e 0a 26 |local ma|ximum..&|
|00000980| 6c 74 3b 2f 4c 49 26 67 | 74 3b 0a 26 6c 74 3b 4c |lt;/LI&g|t;.<L|
|00000990| 49 26 67 74 3b 47 6c 6f | 62 61 6c 20 6d 61 78 69 |I>Glo|bal maxi|
|000009a0| 6d 75 6d 20 69 73 20 61 | 74 20 26 6c 74 3b 49 26 |mum is a|t <I&|
|000009b0| 67 74 3b 42 26 6c 74 3b | 2f 49 26 67 74 3b 2c 20 |gt;B<|/I>, |
|000009c0| 67 6c 6f 62 61 6c 20 6d | 69 6e 69 6d 75 6d 20 69 |global m|inimum i|
|000009d0| 73 20 61 74 20 26 6c 74 | 3b 49 26 67 74 3b 61 26 |s at <|;I>a&|
|000009e0| 6c 74 3b 2f 49 26 67 74 | 3b 2e 0a 26 6c 74 3b 2f |lt;/I>|;..</|
|000009f0| 4c 49 26 67 74 3b 0a 26 | 6c 74 3b 4c 49 26 67 74 |LI>.&|lt;LI>|
|00000a00| 3b 54 68 65 20 76 65 6c | 6f 63 69 74 79 20 69 73 |;The vel|ocity is|
|00000a10| 20 30 20 61 74 20 26 6c | 74 3b 21 26 6e 64 61 73 | 0 at &l|t;!&ndas|
|00000a20| 68 3b 20 4d 41 54 48 0a | 20 3c 21 2d 2d 20 4d 41 |h; MATH.| <!-- MA|
|00000a30| 54 48 0a 20 24 41 2c 20 | 62 2c 20 42 2c 20 63 24 |TH. $A, |b, B, c$|
|00000a40| 0a 20 2d 2d 3e 0a 3c 49 | 3e 41 3c 2f 49 3e 2c 20 |. -->.<I|>A</I>, |
|00000a50| 3c 49 3e 62 3c 2f 49 3e | 2c 20 3c 49 3e 42 3c 2f |<I>b</I>|, <I>B</|
|00000a60| 49 3e 2c 20 3c 49 3e 63 | 3c 2f 49 3e 0a 20 26 6e |I>, <I>c|</I>. &n|
|00000a70| 64 61 73 68 3b 26 67 74 | 3b 0a 26 6c 74 3b 49 26 |dash;>|;.<I&|
|00000a80| 67 74 3b 41 26 6c 74 3b | 2f 49 26 67 74 3b 2c 20 |gt;A<|/I>, |
|00000a90| 26 6c 74 3b 49 26 67 74 | 3b 62 26 6c 74 3b 2f 49 |<I>|;b</I|
|00000aa0| 26 67 74 3b 2c 20 26 6c | 74 3b 49 26 67 74 3b 42 |>, &l|t;I>B|
|00000ab0| 26 6c 74 3b 2f 49 26 67 | 74 3b 2c 20 26 6c 74 3b |</I&g|t;, <|
|00000ac0| 49 26 67 74 3b 63 26 6c | 74 3b 2f 49 26 67 74 3b |I>c&l|t;/I>|
|00000ad0| 2e 20 54 68 65 20 76 65 | 6c 6f 63 69 74 79 20 68 |. The ve|locity h|
|00000ae0| 61 73 20 69 74 73 20 6c | 6f 63 61 6c 20 6d 61 78 |as its l|ocal max|
|00000af0| 69 6d 61 20 61 74 20 70 | 6f 69 6e 74 73 20 77 68 |ima at p|oints wh|
|00000b00| 65 72 65 20 74 68 65 20 | 73 6c 6f 70 65 20 69 73 |ere the |slope is|
|00000b10| 20 67 72 65 61 74 65 73 | 74 3b 20 76 65 6c 6f 63 | greates|t; veloc|
|00000b20| 69 74 79 20 68 61 73 20 | 61 20 6c 6f 63 61 6c 20 |ity has |a local |
|00000b30| 6d 69 6e 69 6d 75 6d 20 | 77 68 65 72 65 20 74 68 |minimum |where th|
|00000b40| 65 20 73 6c 6f 70 65 20 | 69 73 20 73 6d 61 6c 6c |e slope |is small|
|00000b50| 65 73 74 2e 20 20 0a 49 | 74 20 6c 6f 6f 6b 73 20 |est. .I|t looks |
|00000b60| 6c 69 6b 65 20 74 68 65 | 20 6c 61 72 67 65 73 74 |like the| largest|
|00000b70| 20 73 6c 6f 70 65 20 28 | 72 6f 75 67 68 6c 79 20 | slope (|roughly |
|00000b80| 33 30 29 20 6f 63 63 75 | 72 73 20 61 74 20 26 6c |30) occu|rs at &l|
|00000b90| 74 3b 49 26 67 74 3b 61 | 26 6c 74 3b 2f 49 26 67 |t;I>a|</I&g|
|00000ba0| 74 3b 20 6f 72 20 26 6c | 74 3b 49 26 67 74 3b 43 |t; or &l|t;I>C|
|00000bb0| 26 6c 74 3b 2f 49 26 67 | 74 3b 2c 20 74 68 65 20 |</I&g|t;, the |
|00000bc0| 73 6d 61 6c 6c 65 73 74 | 20 73 6c 6f 70 65 20 28 |smallest| slope (|
|00000bd0| 61 62 6f 75 74 20 2d 31 | 35 29 0a 6f 63 63 75 72 |about -1|5).occur|
|00000be0| 73 20 62 65 74 77 65 65 | 6e 20 26 6c 74 3b 49 26 |s betwee|n <I&|
|00000bf0| 67 74 3b 42 26 6c 74 3b | 2f 49 26 67 74 3b 20 61 |gt;B<|/I> a|
|00000c00| 6e 64 20 26 6c 74 3b 49 | 26 67 74 3b 63 26 6c 74 |nd <I|>c<|
|00000c10| 3b 2f 49 26 67 74 3b 2e | 0a 0a 3c 50 3e 0a 26 6c |;/I>.|..<P>.&l|
|00000c20| 74 3b 2f 4c 49 26 67 74 | 3b 0a 26 6c 74 3b 2f 4f |t;/LI>|;.</O|
|00000c30| 4c 26 67 74 3b 0a 0a 3c | 50 3e 0a 26 6c 74 3b 50 |L>..<|P>.<P|
|00000c40| 26 67 74 3b 0a 26 6c 74 | 3b 2f 4c 49 26 67 74 3b |>.<|;/LI>|
|00000c50| 0a 26 6c 74 3b 4c 49 26 | 67 74 3b 28 32 2e 31 2e |.<LI&|gt;(2.1.|
|00000c60| 33 36 29 20 20 53 65 65 | 20 46 69 67 75 72 65 20 |36) See| Figure |
|00000c70| 32 2e 20 20 57 65 20 6b | 6e 6f 77 20 74 68 61 74 |2. We k|now that|
|00000c80| 20 74 68 65 20 73 6c 6f | 70 65 20 66 75 6e 63 74 | the slo|pe funct|
|00000c90| 69 6f 6e 20 28 64 65 72 | 69 76 61 74 69 76 65 29 |ion (der|ivative)|
|00000ca0| 20 6f 66 20 26 6c 74 3b | 49 26 67 74 3b 79 26 6c | of <|I>y&l|
|00000cb0| 74 3b 2f 49 26 67 74 3b | 20 3d 20 26 6c 74 3b 49 |t;/I>| = <I|
|00000cc0| 26 67 74 3b 78 26 6c 74 | 3b 2f 49 26 67 74 3b 26 |>x<|;/I>&|
|00000cd0| 6c 74 3b 53 55 50 26 67 | 74 3b 32 26 6c 74 3b 2f |lt;SUP&g|t;2</|
|00000ce0| 53 55 50 26 67 74 3b 20 | 69 73 20 32 26 6c 74 3b |SUP> |is 2<|
|00000cf0| 49 26 67 74 3b 78 26 6c | 74 3b 2f 49 26 67 74 3b |I>x&l|t;/I>|
|00000d00| 2c 20 73 6f 20 74 68 65 | 20 73 6c 6f 70 65 20 61 |, so the| slope a|
|00000d10| 74 20 26 6c 74 3b 49 26 | 67 74 3b 78 26 6c 74 3b |t <I&|gt;x<|
|00000d20| 2f 49 26 67 74 3b 20 3d | 20 26 6c 74 3b 49 26 67 |/I> =| <I&g|
|00000d30| 74 3b 78 26 6c 74 3b 2f | 49 26 67 74 3b 26 6c 74 |t;x</|I><|
|00000d40| 3b 53 55 42 26 67 74 3b | 30 26 6c 74 3b 2f 53 55 |;SUB>|0</SU|
|00000d50| 42 26 67 74 3b 20 69 73 | 20 26 6c 74 3b 49 26 67 |B> is| <I&g|
|00000d60| 74 3b 6d 26 6c 74 3b 2f | 49 26 67 74 3b 20 3d 20 |t;m</|I> = |
|00000d70| 32 26 6c 74 3b 49 26 67 | 74 3b 78 26 6c 74 3b 2f |2<I&g|t;x</|
|00000d80| 49 26 67 74 3b 26 6c 74 | 3b 53 55 42 26 67 74 3b |I><|;SUB>|
|00000d90| 30 26 6c 74 3b 2f 53 55 | 42 26 67 74 3b 2e 20 20 |0</SU|B>. |
|00000da0| 53 69 6e 63 65 20 26 6c | 74 3b 21 26 6e 64 61 73 |Since &l|t;!&ndas|
|00000db0| 68 3b 20 4d 41 54 48 0a | 20 3c 21 2d 2d 20 4d 41 |h; MATH.| <!-- MA|
|00000dc0| 54 48 0a 20 24 28 78 5f | 30 2c 20 78 5f 30 5e 32 |TH. $(x_|0, x_0^2|
|00000dd0| 29 24 0a 20 2d 2d 3e 0a | 28 3c 49 3e 78 3c 2f 49 |)$. -->.|(<I>x</I|
|00000de0| 3e 3c 53 55 42 3e 30 3c | 2f 53 55 42 3e 2c 20 3c |><SUB>0<|/SUB>, <|
|00000df0| 49 3e 78 3c 2f 49 3e 3c | 53 55 42 3e 30 3c 2f 53 |I>x</I><|SUB>0</S|
|00000e00| 55 42 3e 3c 53 55 50 3e | 32 3c 2f 53 55 50 3e 29 |UB><SUP>|2</SUP>)|
|00000e10| 0a 20 26 6e 64 61 73 68 | 3b 26 67 74 3b 0a 28 26 |. &ndash|;>.(&|
|00000e20| 6c 74 3b 49 26 67 74 3b | 78 26 6c 74 3b 2f 49 26 |lt;I>|x</I&|
|00000e30| 67 74 3b 26 6c 74 3b 53 | 55 42 26 67 74 3b 30 26 |gt;<S|UB>0&|
|00000e40| 6c 74 3b 2f 53 55 42 26 | 67 74 3b 2c 20 26 6c 74 |lt;/SUB&|gt;, <|
|00000e50| 3b 49 26 67 74 3b 78 26 | 6c 74 3b 2f 49 26 67 74 |;I>x&|lt;/I>|
|00000e60| 3b 26 6c 74 3b 53 55 42 | 26 67 74 3b 30 26 6c 74 |;<SUB|>0<|
|00000e70| 3b 2f 53 55 42 26 67 74 | 3b 26 6c 74 3b 53 55 50 |;/SUB>|;<SUP|
|00000e80| 26 67 74 3b 32 26 6c 74 | 3b 2f 53 55 50 26 67 74 |>2<|;/SUP>|
|00000e90| 3b 29 20 69 73 20 61 20 | 70 6f 69 6e 74 20 6f 6e |;) is a |point on|
|00000ea0| 20 74 68 65 20 74 61 6e | 67 65 6e 74 2c 20 74 68 | the tan|gent, th|
|00000eb0| 65 20 70 6f 69 6e 74 2d | 73 6c 6f 70 65 20 66 6f |e point-|slope fo|
|00000ec0| 72 6d 75 6c 61 20 67 69 | 76 65 73 20 74 68 65 20 |rmula gi|ves the |
|00000ed0| 74 61 6e 67 65 6e 74 20 | 6c 69 6e 65 20 61 73 20 |tangent |line as |
|00000ee0| 26 6c 74 3b 21 26 6e 64 | 61 73 68 3b 20 4d 41 54 |<!&nd|ash; MAT|
|00000ef0| 48 0a 20 3c 21 2d 2d 20 | 4d 41 54 48 0a 20 24 79 |H. <!-- |MATH. $y|
|00000f00| 20 20 2d 20 78 5f 30 5e | 32 20 3d 20 32 20 78 5f | - x_0^|2 = 2 x_|
|00000f10| 30 20 28 20 78 20 2d 20 | 78 5f 30 29 24 0a 20 2d |0 ( x - |x_0)$. -|
|00000f20| 2d 3e 0a 3c 49 3e 79 3c | 2f 49 3e 20 2d 20 3c 49 |->.<I>y<|/I> - <I|
|00000f30| 3e 78 3c 2f 49 3e 3c 53 | 55 42 3e 30 3c 2f 53 55 |>x</I><S|UB>0</SU|
|00000f40| 42 3e 3c 53 55 50 3e 32 | 3c 2f 53 55 50 3e 20 3d |B><SUP>2|</SUP> =|
|00000f50| 20 32 3c 49 3e 78 3c 2f | 49 3e 3c 53 55 42 3e 30 | 2<I>x</|I><SUB>0|
|00000f60| 3c 2f 53 55 42 3e 28 3c | 49 3e 78 3c 2f 49 3e 20 |</SUB>(<|I>x</I> |
|00000f70| 2d 20 3c 49 3e 78 3c 2f | 49 3e 3c 53 55 42 3e 30 |- <I>x</|I><SUB>0|
|00000f80| 3c 2f 53 55 42 3e 29 0a | 20 26 6e 64 61 73 68 3b |</SUB>).| –|
|00000f90| 26 67 74 3b 0a 26 6c 74 | 3b 49 26 67 74 3b 79 26 |>.<|;I>y&|
|00000fa0| 6c 74 3b 2f 49 26 67 74 | 3b 20 2d 20 26 6c 74 3b |lt;/I>|; - <|
|00000fb0| 49 26 67 74 3b 78 26 6c | 74 3b 2f 49 26 67 74 3b |I>x&l|t;/I>|
|00000fc0| 26 6c 74 3b 53 55 42 26 | 67 74 3b 30 26 6c 74 3b |<SUB&|gt;0<|
|00000fd0| 2f 53 55 42 26 67 74 3b | 26 6c 74 3b 53 55 50 26 |/SUB>|<SUP&|
|00000fe0| 67 74 3b 32 26 6c 74 3b | 2f 53 55 50 26 67 74 3b |gt;2<|/SUP>|
|00000ff0| 20 3d 20 32 26 6c 74 3b | 49 26 67 74 3b 78 26 6c | = 2<|I>x&l|
|00001000| 74 3b 2f 49 26 67 74 3b | 26 6c 74 3b 53 55 42 26 |t;/I>|<SUB&|
|00001010| 67 74 3b 30 26 6c 74 3b | 2f 53 55 42 26 67 74 3b |gt;0<|/SUB>|
|00001020| 28 26 6c 74 3b 49 26 67 | 74 3b 78 26 6c 74 3b 2f |(<I&g|t;x</|
|00001030| 49 26 67 74 3b 20 2d 20 | 26 6c 74 3b 49 26 67 74 |I> - |<I>|
|00001040| 3b 78 26 6c 74 3b 2f 49 | 26 67 74 3b 26 6c 74 3b |;x</I|><|
|00001050| 53 55 42 26 67 74 3b 30 | 26 6c 74 3b 2f 53 55 42 |SUB>0|</SUB|
|00001060| 26 67 74 3b 29 2e 20 20 | 54 68 69 73 20 6c 69 6e |>). |This lin|
|00001070| 65 20 69 6e 74 65 72 73 | 65 63 74 73 20 74 68 65 |e inters|ects the|
|00001080| 20 26 6c 74 3b 49 26 67 | 74 3b 78 26 6c 74 3b 2f | <I&g|t;x</|
|00001090| 49 26 67 74 3b 2d 61 78 | 69 73 20 77 68 65 6e 20 |I>-ax|is when |
|000010a0| 26 6c 74 3b 21 26 6e 64 | 61 73 68 3b 20 4d 41 54 |<!&nd|ash; MAT|
|000010b0| 48 0a 20 3c 21 2d 2d 20 | 4d 41 54 48 0a 20 24 78 |H. <!-- |MATH. $x|
|000010c0| 20 3d 20 78 5f 31 2c 20 | 79 20 3d 20 30 24 0a 20 | = x_1, |y = 0$. |
|000010d0| 2d 2d 3e 0a 3c 49 3e 78 | 3c 2f 49 3e 20 3d 20 3c |-->.<I>x|</I> = <|
|000010e0| 49 3e 78 3c 2f 49 3e 3c | 53 55 42 3e 31 3c 2f 53 |I>x</I><|SUB>1</S|
|000010f0| 55 42 3e 2c 20 3c 49 3e | 79 3c 2f 49 3e 20 3d 20 |UB>, <I>|y</I> = |
|00001100| 30 0a 20 26 6e 64 61 73 | 68 3b 26 67 74 3b 0a 26 |0. &ndas|h;>.&|
|00001110| 6c 74 3b 49 26 67 74 3b | 78 26 6c 74 3b 2f 49 26 |lt;I>|x</I&|
|00001120| 67 74 3b 20 3d 20 26 6c | 74 3b 49 26 67 74 3b 78 |gt; = &l|t;I>x|
|00001130| 26 6c 74 3b 2f 49 26 67 | 74 3b 26 6c 74 3b 53 55 |</I&g|t;<SU|
|00001140| 42 26 67 74 3b 31 26 6c | 74 3b 2f 53 55 42 26 67 |B>1&l|t;/SUB&g|
|00001150| 74 3b 2c 20 26 6c 74 3b | 49 26 67 74 3b 79 26 6c |t;, <|I>y&l|
|00001160| 74 3b 2f 49 26 67 74 3b | 20 3d 20 30 2c 20 73 6f |t;/I>| = 0, so|
|00001170| 20 26 6c 74 3b 21 26 6e | 64 61 73 68 3b 20 4d 41 | <!&n|dash; MA|
|00001180| 54 48 0a 20 3c 21 2d 2d | 20 4d 41 54 48 0a 20 24 |TH. <!--| MATH. $|
|00001190| 30 20 20 2d 20 78 5f 30 | 5e 32 20 3d 20 32 20 78 |0 - x_0|^2 = 2 x|
|000011a0| 5f 30 20 28 20 78 5f 31 | 20 2d 20 78 5f 30 29 24 |_0 ( x_1| - x_0)$|
|000011b0| 0a 20 2d 2d 3e 0a 30 20 | 2d 20 3c 49 3e 78 3c 2f |. -->.0 |- <I>x</|
|000011c0| 49 3e 3c 53 55 42 3e 30 | 3c 2f 53 55 42 3e 3c 53 |I><SUB>0|</SUB><S|
|000011d0| 55 50 3e 32 3c 2f 53 55 | 50 3e 20 3d 20 32 3c 49 |UP>2</SU|P> = 2<I|
|000011e0| 3e 78 3c 2f 49 3e 3c 53 | 55 42 3e 30 3c 2f 53 55 |>x</I><S|UB>0</SU|
|000011f0| 42 3e 28 3c 49 3e 78 3c | 2f 49 3e 3c 53 55 42 3e |B>(<I>x<|/I><SUB>|
|00001200| 31 3c 2f 53 55 42 3e 20 | 2d 20 3c 49 3e 78 3c 2f |1</SUB> |- <I>x</|
|00001210| 49 3e 3c 53 55 42 3e 30 | 3c 2f 53 55 42 3e 29 0a |I><SUB>0|</SUB>).|
|00001220| 20 26 6e 64 61 73 68 3b | 26 67 74 3b 0a 30 20 2d | –|>.0 -|
|00001230| 20 26 6c 74 3b 49 26 67 | 74 3b 78 26 6c 74 3b 2f | <I&g|t;x</|
|00001240| 49 26 67 74 3b 26 6c 74 | 3b 53 55 42 26 67 74 3b |I><|;SUB>|
|00001250| 30 26 6c 74 3b 2f 53 55 | 42 26 67 74 3b 26 6c 74 |0</SU|B><|
|00001260| 3b 53 55 50 26 67 74 3b | 32 26 6c 74 3b 2f 53 55 |;SUP>|2</SU|
|00001270| 50 26 67 74 3b 20 3d 20 | 32 26 6c 74 3b 49 26 67 |P> = |2<I&g|
|00001280| 74 3b 78 26 6c 74 3b 2f | 49 26 67 74 3b 26 6c 74 |t;x</|I><|
|00001290| 3b 53 55 42 26 67 74 3b | 30 26 6c 74 3b 2f 53 55 |;SUB>|0</SU|
|000012a0| 42 26 67 74 3b 28 26 6c | 74 3b 49 26 67 74 3b 78 |B>(&l|t;I>x|
|000012b0| 26 6c 74 3b 2f 49 26 67 | 74 3b 26 6c 74 3b 53 55 |</I&g|t;<SU|
|000012c0| 42 26 67 74 3b 31 26 6c | 74 3b 2f 53 55 42 26 67 |B>1&l|t;/SUB&g|
|000012d0| 74 3b 20 2d 20 26 6c 74 | 3b 49 26 67 74 3b 78 26 |t; - <|;I>x&|
|000012e0| 6c 74 3b 2f 49 26 67 74 | 3b 26 6c 74 3b 53 55 42 |lt;/I>|;<SUB|
|000012f0| 26 67 74 3b 30 26 6c 74 | 3b 2f 53 55 42 26 67 74 |>0<|;/SUB>|
|00001300| 3b 29 2e 20 20 53 6f 6c | 76 69 6e 67 20 66 6f 72 |;). Sol|ving for|
|00001310| 20 26 6c 74 3b 49 26 67 | 74 3b 78 26 6c 74 3b 2f | <I&g|t;x</|
|00001320| 49 26 67 74 3b 26 6c 74 | 3b 53 55 42 26 67 74 3b |I><|;SUB>|
|00001330| 31 26 6c 74 3b 2f 53 55 | 42 26 67 74 3b 20 67 69 |1</SU|B> gi|
|00001340| 76 65 73 20 26 6c 74 3b | 21 26 6e 64 61 73 68 3b |ves <|!–|
|00001350| 20 4d 41 54 48 0a 20 3c | 21 2d 2d 20 4d 41 54 48 | MATH. <|!-- MATH|
|00001360| 0a 20 24 78 5f 31 20 3d | 20 78 5f 30 20 2f 20 32 |. $x_1 =| x_0 / 2|
|00001370| 24 0a 20 2d 2d 3e 0a 3c | 49 3e 78 3c 2f 49 3e 3c |$. -->.<|I>x</I><|
|00001380| 53 55 42 3e 31 3c 2f 53 | 55 42 3e 20 3d 20 3c 49 |SUB>1</S|UB> = <I|
|00001390| 3e 78 3c 2f 49 3e 3c 53 | 55 42 3e 30 3c 2f 53 55 |>x</I><S|UB>0</SU|
|000013a0| 42 3e 2f 32 0a 20 26 6e | 64 61 73 68 3b 26 67 74 |B>/2. &n|dash;>|
|000013b0| 3b 0a 26 6c 74 3b 49 26 | 67 74 3b 78 26 6c 74 3b |;.<I&|gt;x<|
|000013c0| 2f 49 26 67 74 3b 26 6c | 74 3b 53 55 42 26 67 74 |/I>&l|t;SUB>|
|000013d0| 3b 31 26 6c 74 3b 2f 53 | 55 42 26 67 74 3b 20 3d |;1</S|UB> =|
|000013e0| 20 26 6c 74 3b 49 26 67 | 74 3b 78 26 6c 74 3b 2f | <I&g|t;x</|
|000013f0| 49 26 67 74 3b 26 6c 74 | 3b 53 55 42 26 67 74 3b |I><|;SUB>|
|00001400| 30 26 6c 74 3b 2f 53 55 | 42 26 67 74 3b 2f 32 20 |0</SU|B>/2 |
|00001410| 61 73 20 77 61 73 20 74 | 6f 20 62 65 20 73 68 6f |as was t|o be sho|
|00001420| 77 6e 2e 09 0a 0a 3c 50 | 3e 0a 26 6c 74 3b 44 49 |wn....<P|>.<DI|
|00001430| 56 20 63 6c 61 73 73 3d | 22 43 45 4e 54 45 52 22 |V class=|"CENTER"|
|00001440| 26 67 74 3b 26 6c 74 3b | 41 20 49 44 3d 22 31 34 |><|A ID="14|
|00001450| 22 26 67 74 3b 26 6c 74 | 3b 2f 41 26 67 74 3b 0a |"><|;/A>.|
|00001460| 26 6c 74 3b 54 41 42 4c | 45 26 67 74 3b 0a 26 6c |<TABL|E>.&l|
|00001470| 74 3b 43 41 50 54 49 4f | 4e 20 63 6c 61 73 73 3d |t;CAPTIO|N class=|
|00001480| 22 42 4f 54 54 4f 4d 22 | 26 67 74 3b 26 6c 74 3b |"BOTTOM"|><|
|00001490| 53 54 52 4f 4e 47 26 67 | 74 3b 46 69 67 75 72 65 |STRONG&g|t;Figure|
|000014a0| 3a 26 6c 74 3b 2f 53 54 | 52 4f 4e 47 26 67 74 3b |:</ST|RONG>|
|000014b0| 0a 44 69 61 67 72 61 6d | 20 66 6f 72 20 70 72 6f |.Diagram| for pro|
|000014c0| 62 6c 65 6d 20 32 2e 26 | 6c 74 3b 2f 43 41 50 54 |blem 2.&|lt;/CAPT|
|000014d0| 49 4f 4e 26 67 74 3b 0a | 26 6c 74 3b 54 52 26 67 |ION>.|<TR&g|
|000014e0| 74 3b 26 6c 74 3b 54 44 | 26 67 74 3b 26 6c 74 3b |t;<TD|><|
|000014f0| 49 4d 47 0a 20 53 54 59 | 4c 45 3d 22 68 65 69 67 |IMG. STY|LE="heig|
|00001500| 68 74 3a 20 32 38 36 2e | 37 36 65 78 3b 20 22 20 |ht: 286.|76ex; " |
|00001510| 53 52 43 3d 22 69 6d 67 | 32 2e 70 6e 67 22 0a 20 |SRC="img|2.png". |
|00001520| 41 4c 54 3d 22 0a 3c 44 | 49 56 20 63 6c 61 73 73 |ALT=".<D|IV class|
|00001530| 3d 22 43 45 4e 54 45 52 | 22 3e 0a 3c 49 4d 47 0a |="CENTER|">.<IMG.|
|00001540| 20 53 54 59 4c 45 3d 22 | 68 65 69 67 68 74 3a 20 | STYLE="|height: |
|00001550| 33 31 34 2e 30 30 65 78 | 3b 20 22 20 53 52 43 3d |314.00ex|; " SRC=|
|00001560| 22 69 6d 67 32 2e 70 6e | 67 22 0a 20 41 4c 54 3d |"img2.pn|g". ALT=|
|00001570| 22 5c 62 65 67 69 6e 7b | 66 69 67 75 72 65 7d 5c |"\begin{|figure}\|
|00001580| 65 70 73 66 79 73 69 7a | 65 20 31 31 30 70 74 0a |epsfysiz|e 110pt.|
|00001590| 5c 63 65 6e 74 65 72 6c | 69 6e 65 7b 5c 65 70 73 |\centerl|ine{\eps|
|000015a0| 66 66 69 6c 65 7b 61 6e | 73 31 70 32 2e 65 70 73 |ffile{an|s1p2.eps|
|000015b0| 7d 7d 0a 5c 65 6e 64 7b | 66 69 67 75 72 65 7d 22 |}}.\end{|figure}"|
|000015c0| 3e 0a 3c 2f 44 49 56 3e | 22 26 67 74 3b 26 6c 74 |>.</DIV>|"><|
|000015d0| 3b 2f 54 44 26 67 74 3b | 26 6c 74 3b 2f 54 52 26 |;/TD>|</TR&|
|000015e0| 67 74 3b 0a 26 6c 74 3b | 2f 54 41 42 4c 45 26 67 |gt;.<|/TABLE&g|
|000015f0| 74 3b 0a 26 6c 74 3b 2f | 44 49 56 26 67 74 3b 0a |t;.</|DIV>.|
|00001600| 0a 3c 50 3e 0a 26 6c 74 | 3b 50 26 67 74 3b 0a 26 |.<P>.<|;P>.&|
|00001610| 6c 74 3b 2f 4c 49 26 67 | 74 3b 0a 26 6c 74 3b 4c |lt;/LI&g|t;.<L|
|00001620| 49 26 67 74 3b 28 32 2e | 31 2e 34 32 29 20 20 53 |I>(2.|1.42) S|
|00001630| 65 65 20 46 69 67 75 72 | 65 20 33 2e 20 20 53 6f |ee Figur|e 3. So|
|00001640| 6d 65 20 73 74 65 70 73 | 20 61 6c 6f 6e 67 20 74 |me steps| along t|
|00001650| 68 65 20 77 61 79 3a 20 | 26 6c 74 3b 21 26 6e 64 |he way: |<!&nd|
|00001660| 61 73 68 3b 20 4d 41 54 | 48 0a 20 3c 21 2d 2d 20 |ash; MAT|H. <!-- |
|00001670| 4d 41 54 48 0a 20 24 6d | 20 3d 20 34 20 2d 20 32 |MATH. $m| = 4 - 2|
|00001680| 61 24 0a 20 2d 2d 3e 0a | 3c 49 3e 6d 3c 2f 49 3e |a$. -->.|<I>m</I>|
|00001690| 20 3d 20 34 20 2d 20 32 | 3c 49 3e 61 3c 2f 49 3e | = 4 - 2|<I>a</I>|
|000016a0| 0a 20 26 6e 64 61 73 68 | 3b 26 67 74 3b 0a 26 6c |. &ndash|;>.&l|
|000016b0| 74 3b 49 26 67 74 3b 6d | 26 6c 74 3b 2f 49 26 67 |t;I>m|</I&g|
|000016c0| 74 3b 20 3d 20 34 20 2d | 20 32 26 6c 74 3b 49 26 |t; = 4 -| 2<I&|
|000016d0| 67 74 3b 61 26 6c 74 3b | 2f 49 26 67 74 3b 2c 20 |gt;a<|/I>, |
|000016e0| 74 61 6e 67 65 6e 74 20 | 6c 69 6e 65 20 69 73 20 |tangent |line is |
|000016f0| 26 6c 74 3b 21 26 6e 64 | 61 73 68 3b 20 4d 41 54 |<!&nd|ash; MAT|
|00001700| 48 0a 20 3c 21 2d 2d 20 | 4d 41 54 48 0a 20 24 79 |H. <!-- |MATH. $y|
|00001710| 20 2d 20 28 34 61 20 2d | 20 61 5e 32 29 20 3d 20 | - (4a -| a^2) = |
|00001720| 28 34 20 2d 20 32 20 61 | 29 20 28 78 20 2d 20 61 |(4 - 2 a|) (x - a|
|00001730| 29 24 0a 20 2d 2d 3e 0a | 3c 49 3e 79 3c 2f 49 3e |)$. -->.|<I>y</I>|
|00001740| 20 2d 20 28 34 3c 49 3e | 61 3c 2f 49 3e 20 2d 20 | - (4<I>|a</I> - |
|00001750| 3c 49 3e 61 3c 2f 49 3e | 3c 53 55 50 3e 32 3c 2f |<I>a</I>|<SUP>2</|
|00001760| 53 55 50 3e 29 20 3d 20 | 28 34 20 2d 20 32 3c 49 |SUP>) = |(4 - 2<I|
|00001770| 3e 61 3c 2f 49 3e 29 28 | 3c 49 3e 78 3c 2f 49 3e |>a</I>)(|<I>x</I>|
|00001780| 20 2d 20 3c 49 3e 61 3c | 2f 49 3e 29 0a 20 26 6e | - <I>a<|/I>). &n|
|00001790| 64 61 73 68 3b 26 67 74 | 3b 0a 26 6c 74 3b 49 26 |dash;>|;.<I&|
|000017a0| 67 74 3b 79 26 6c 74 3b | 2f 49 26 67 74 3b 20 2d |gt;y<|/I> -|
|000017b0| 20 28 34 26 6c 74 3b 49 | 26 67 74 3b 61 26 6c 74 | (4<I|>a<|
|000017c0| 3b 2f 49 26 67 74 3b 20 | 2d 20 26 6c 74 3b 49 26 |;/I> |- <I&|
|000017d0| 67 74 3b 61 26 6c 74 3b | 2f 49 26 67 74 3b 26 6c |gt;a<|/I>&l|
|000017e0| 74 3b 53 55 50 26 67 74 | 3b 32 26 6c 74 3b 2f 53 |t;SUP>|;2</S|
|000017f0| 55 50 26 67 74 3b 29 20 | 3d 20 28 34 20 2d 20 32 |UP>) |= (4 - 2|
|00001800| 26 6c 74 3b 49 26 67 74 | 3b 61 26 6c 74 3b 2f 49 |<I>|;a</I|
|00001810| 26 67 74 3b 29 28 26 6c | 74 3b 49 26 67 74 3b 78 |>)(&l|t;I>x|
|00001820| 26 6c 74 3b 2f 49 26 67 | 74 3b 20 2d 20 26 6c 74 |</I&g|t; - <|
|00001830| 3b 49 26 67 74 3b 61 26 | 6c 74 3b 2f 49 26 67 74 |;I>a&|lt;/I>|
|00001840| 3b 29 2e 20 20 50 6c 75 | 67 20 69 6e 20 74 68 65 |;). Plu|g in the|
|00001850| 20 70 6f 69 6e 74 20 28 | 32 2c 20 35 29 20 66 6f | point (|2, 5) fo|
|00001860| 72 20 28 26 6c 74 3b 49 | 26 67 74 3b 78 26 6c 74 |r (<I|>x<|
|00001870| 3b 2f 49 26 67 74 3b 2c | 20 26 6c 74 3b 49 26 67 |;/I>,| <I&g|
|00001880| 74 3b 79 26 6c 74 3b 2f | 49 26 67 74 3b 29 20 74 |t;y</|I>) t|
|00001890| 6f 20 67 65 74 20 65 71 | 75 61 74 69 6f 6e 20 66 |o get eq|uation f|
|000018a0| 6f 72 20 26 6c 74 3b 49 | 26 67 74 3b 61 26 6c 74 |or <I|>a<|
|000018b0| 3b 2f 49 26 67 74 3b 20 | 61 6e 64 20 73 69 6d 70 |;/I> |and simp|
|000018c0| 6c 69 66 79 3a 20 26 6c | 74 3b 21 26 6e 64 61 73 |lify: &l|t;!&ndas|
|000018d0| 68 3b 20 4d 41 54 48 0a | 20 3c 21 2d 2d 20 4d 41 |h; MATH.| <!-- MA|
|000018e0| 54 48 0a 20 24 28 61 20 | 2d 20 31 29 28 61 20 2d |TH. $(a |- 1)(a -|
|000018f0| 20 33 29 20 3d 20 30 24 | 0a 20 2d 2d 3e 0a 28 3c | 3) = 0$|. -->.(<|
|00001900| 49 3e 61 3c 2f 49 3e 20 | 2d 20 31 29 28 3c 49 3e |I>a</I> |- 1)(<I>|
|00001910| 61 3c 2f 49 3e 20 2d 20 | 33 29 20 3d 20 30 0a 20 |a</I> - |3) = 0. |
|00001920| 26 6e 64 61 73 68 3b 26 | 67 74 3b 0a 28 26 6c 74 |–&|gt;.(<|
|00001930| 3b 49 26 67 74 3b 61 26 | 6c 74 3b 2f 49 26 67 74 |;I>a&|lt;/I>|
|00001940| 3b 20 2d 20 31 29 28 26 | 6c 74 3b 49 26 67 74 3b |; - 1)(&|lt;I>|
|00001950| 61 26 6c 74 3b 2f 49 26 | 67 74 3b 20 2d 20 33 29 |a</I&|gt; - 3)|
|00001960| 20 3d 20 30 2e 20 20 41 | 6e 73 77 65 72 73 3a 20 | = 0. A|nswers: |
|00001970| 26 6c 74 3b 21 26 6e 64 | 61 73 68 3b 20 4d 41 54 |<!&nd|ash; MAT|
|00001980| 48 0a 20 3c 21 2d 2d 20 | 4d 41 54 48 0a 20 24 79 |H. <!-- |MATH. $y|
|00001990| 20 3d 20 32 78 20 2b 20 | 31 2c 20 79 20 3d 20 2d | = 2x + |1, y = -|
|000019a0| 32 78 20 2b 20 39 24 0a | 20 2d 2d 3e 0a 3c 49 3e |2x + 9$.| -->.<I>|
|000019b0| 79 3c 2f 49 3e 20 3d 20 | 32 3c 49 3e 78 3c 2f 49 |y</I> = |2<I>x</I|
|000019c0| 3e 20 2b 20 31 2c 20 3c | 49 3e 79 3c 2f 49 3e 20 |> + 1, <|I>y</I> |
|000019d0| 3d 20 2d 20 32 3c 49 3e | 78 3c 2f 49 3e 20 2b 20 |= - 2<I>|x</I> + |
|000019e0| 39 0a 20 26 6e 64 61 73 | 68 3b 26 67 74 3b 0a 26 |9. &ndas|h;>.&|
|000019f0| 6c 74 3b 49 26 67 74 3b | 79 26 6c 74 3b 2f 49 26 |lt;I>|y</I&|
|00001a00| 67 74 3b 20 3d 20 32 26 | 6c 74 3b 49 26 67 74 3b |gt; = 2&|lt;I>|
|00001a10| 78 26 6c 74 3b 2f 49 26 | 67 74 3b 20 2b 20 31 2c |x</I&|gt; + 1,|
|00001a20| 20 26 6c 74 3b 49 26 67 | 74 3b 79 26 6c 74 3b 2f | <I&g|t;y</|
|00001a30| 49 26 67 74 3b 20 3d 20 | 2d 20 32 26 6c 74 3b 49 |I> = |- 2<I|
|00001a40| 26 67 74 3b 78 26 6c 74 | 3b 2f 49 26 67 74 3b 20 |>x<|;/I> |
|00001a50| 2b 20 39 2e 0a 0a 3c 50 | 3e 0a 26 6c 74 3b 50 26 |+ 9...<P|>.<P&|
|00001a60| 67 74 3b 0a 0a 3c 50 3e | 0a 26 6c 74 3b 44 49 56 |gt;..<P>|.<DIV|
|00001a70| 20 63 6c 61 73 73 3d 22 | 43 45 4e 54 45 52 22 26 | class="|CENTER"&|
|00001a80| 67 74 3b 26 6c 74 3b 41 | 20 49 44 3d 22 31 38 22 |gt;<A| ID="18"|
|00001a90| 26 67 74 3b 26 6c 74 3b | 2f 41 26 67 74 3b 0a 26 |><|/A>.&|
|00001aa0| 6c 74 3b 54 41 42 4c 45 | 26 67 74 3b 0a 26 6c 74 |lt;TABLE|>.<|
|00001ab0| 3b 43 41 50 54 49 4f 4e | 20 63 6c 61 73 73 3d 22 |;CAPTION| class="|
|00001ac0| 42 4f 54 54 4f 4d 22 26 | 67 74 3b 26 6c 74 3b 53 |BOTTOM"&|gt;<S|
|00001ad0| 54 52 4f 4e 47 26 67 74 | 3b 46 69 67 75 72 65 3a |TRONG>|;Figure:|
|00001ae0| 26 6c 74 3b 2f 53 54 52 | 4f 4e 47 26 67 74 3b 0a |</STR|ONG>.|
|00001af0| 44 69 61 67 72 61 6d 20 | 66 6f 72 20 70 72 6f 62 |Diagram |for prob|
|00001b00| 6c 65 6d 20 33 2e 26 6c | 74 3b 2f 43 41 50 54 49 |lem 3.&l|t;/CAPTI|
|00001b10| 4f 4e 26 67 74 3b 0a 26 | 6c 74 3b 54 52 26 67 74 |ON>.&|lt;TR>|
|00001b20| 3b 26 6c 74 3b 54 44 26 | 67 74 3b 26 6c 74 3b 49 |;<TD&|gt;<I|
|00001b30| 4d 47 0a 20 53 54 59 4c | 45 3d 22 68 65 69 67 68 |MG. STYL|E="heigh|
|00001b40| 74 3a 20 32 38 36 2e 37 | 36 65 78 3b 20 22 20 53 |t: 286.7|6ex; " S|
|00001b50| 52 43 3d 22 69 6d 67 33 | 2e 70 6e 67 22 0a 20 41 |RC="img3|.png". A|
|00001b60| 4c 54 3d 22 0a 3c 44 49 | 56 20 63 6c 61 73 73 3d |LT=".<DI|V class=|
|00001b70| 22 43 45 4e 54 45 52 22 | 3e 0a 3c 49 4d 47 0a 20 |"CENTER"|>.<IMG. |
|00001b80| 53 54 59 4c 45 3d 22 68 | 65 69 67 68 74 3a 20 33 |STYLE="h|eight: 3|
|00001b90| 31 34 2e 30 30 65 78 3b | 20 22 20 53 52 43 3d 22 |14.00ex;| " SRC="|
|00001ba0| 69 6d 67 33 2e 70 6e 67 | 22 0a 20 41 4c 54 3d 22 |img3.png|". ALT="|
|00001bb0| 5c 62 65 67 69 6e 7b 66 | 69 67 75 72 65 7d 5c 65 |\begin{f|igure}\e|
|00001bc0| 70 73 66 79 73 69 7a 65 | 20 31 31 30 70 74 0a 5c |psfysize| 110pt.\|
|00001bd0| 63 65 6e 74 65 72 6c 69 | 6e 65 7b 5c 65 70 73 66 |centerli|ne{\epsf|
|00001be0| 66 69 6c 65 7b 61 6e 73 | 31 70 33 2e 65 70 73 7d |file{ans|1p3.eps}|
|00001bf0| 7d 0a 5c 65 6e 64 7b 66 | 69 67 75 72 65 7d 22 3e |}.\end{f|igure}">|
|00001c00| 0a 3c 2f 44 49 56 3e 22 | 26 67 74 3b 26 6c 74 3b |.</DIV>"|><|
|00001c10| 2f 54 44 26 67 74 3b 26 | 6c 74 3b 2f 54 52 26 67 |/TD>&|lt;/TR&g|
|00001c20| 74 3b 0a 26 6c 74 3b 2f | 54 41 42 4c 45 26 67 74 |t;.</|TABLE>|
|00001c30| 3b 0a 26 6c 74 3b 2f 44 | 49 56 26 67 74 3b 0a 0a |;.</D|IV>..|
|00001c40| 3c 50 3e 0a 26 6c 74 3b | 50 26 67 74 3b 0a 26 6c |<P>.<|P>.&l|
|00001c50| 74 3b 2f 4c 49 26 67 74 | 3b 0a 26 6c 74 3b 4c 49 |t;/LI>|;.<LI|
|00001c60| 26 67 74 3b 28 32 2e 31 | 2e 34 33 29 20 20 53 65 |>(2.1|.43) Se|
|00001c70| 65 20 46 69 67 75 72 65 | 20 34 2e 20 20 54 68 65 |e Figure| 4. The|
|00001c80| 20 73 6c 6f 70 65 20 6f | 66 20 74 68 65 20 74 61 | slope o|f the ta|
|00001c90| 6e 67 65 6e 74 20 61 74 | 20 26 6c 74 3b 49 26 67 |ngent at| <I&g|
|00001ca0| 74 3b 78 26 6c 74 3b 2f | 49 26 67 74 3b 20 3d 20 |t;x</|I> = |
|00001cb0| 26 6c 74 3b 49 26 67 74 | 3b 61 26 6c 74 3b 2f 49 |<I>|;a</I|
|00001cc0| 26 67 74 3b 20 77 6f 75 | 6c 64 20 62 65 20 32 26 |> wou|ld be 2&|
|00001cd0| 6c 74 3b 49 26 67 74 3b | 61 26 6c 74 3b 2f 49 26 |lt;I>|a</I&|
|00001ce0| 67 74 3b 2c 20 73 6f 20 | 74 68 65 20 73 6c 6f 70 |gt;, so |the slop|
|00001cf0| 65 20 6f 66 20 74 68 65 | 20 6e 6f 72 6d 61 6c 20 |e of the| normal |
|00001d00| 69 73 20 2d 31 2f 32 26 | 6c 74 3b 49 26 67 74 3b |is -1/2&|lt;I>|
|00001d10| 61 26 6c 74 3b 2f 49 26 | 67 74 3b 2e 20 20 55 73 |a</I&|gt;. Us|
|00001d20| 65 20 70 6f 69 6e 74 2d | 73 6c 6f 70 65 20 74 6f |e point-|slope to|
|00001d30| 20 67 65 74 20 74 68 65 | 20 65 71 75 61 74 69 6f | get the| equatio|
|00001d40| 6e 20 6f 66 20 74 68 65 | 20 6e 6f 72 6d 61 6c 3a |n of the| normal:|
|00001d50| 20 26 6c 74 3b 21 26 6e | 64 61 73 68 3b 20 4d 41 | <!&n|dash; MA|
|00001d60| 54 48 0a 20 3c 21 2d 2d | 20 4d 41 54 48 0a 20 24 |TH. <!--| MATH. $|
|00001d70| 79 20 2d 20 61 5e 32 20 | 3d 28 20 2d 31 2f 32 61 |y - a^2 |=( -1/2a|
|00001d80| 29 20 28 20 78 20 2d 20 | 61 29 24 0a 20 2d 2d 3e |) ( x - |a)$. -->|
|00001d90| 0a 3c 49 3e 79 3c 2f 49 | 3e 20 2d 20 3c 49 3e 61 |.<I>y</I|> - <I>a|
|00001da0| 3c 2f 49 3e 3c 53 55 50 | 3e 32 3c 2f 53 55 50 3e |</I><SUP|>2</SUP>|
|00001db0| 20 3d 20 28 2d 20 31 2f | 32 3c 49 3e 61 3c 2f 49 | = (- 1/|2<I>a</I|
|00001dc0| 3e 29 28 3c 49 3e 78 3c | 2f 49 3e 20 2d 20 3c 49 |>)(<I>x<|/I> - <I|
|00001dd0| 3e 61 3c 2f 49 3e 29 0a | 20 26 6e 64 61 73 68 3b |>a</I>).| –|
|00001de0| 26 67 74 3b 0a 26 6c 74 | 3b 49 26 67 74 3b 79 26 |>.<|;I>y&|
|00001df0| 6c 74 3b 2f 49 26 67 74 | 3b 20 2d 20 26 6c 74 3b |lt;/I>|; - <|
|00001e00| 49 26 67 74 3b 61 26 6c | 74 3b 2f 49 26 67 74 3b |I>a&l|t;/I>|
|00001e10| 26 6c 74 3b 53 55 50 26 | 67 74 3b 32 26 6c 74 3b |<SUP&|gt;2<|
|00001e20| 2f 53 55 50 26 67 74 3b | 20 3d 20 28 2d 20 31 2f |/SUP>| = (- 1/|
|00001e30| 32 26 6c 74 3b 49 26 67 | 74 3b 61 26 6c 74 3b 2f |2<I&g|t;a</|
|00001e40| 49 26 67 74 3b 29 28 26 | 6c 74 3b 49 26 67 74 3b |I>)(&|lt;I>|
|00001e50| 78 26 6c 74 3b 2f 49 26 | 67 74 3b 20 2d 20 26 6c |x</I&|gt; - &l|
|00001e60| 74 3b 49 26 67 74 3b 61 | 26 6c 74 3b 2f 49 26 67 |t;I>a|</I&g|
|00001e70| 74 3b 29 2e 20 20 53 75 | 62 73 74 69 74 75 74 65 |t;). Su|bstitute|
|00001e80| 20 74 68 65 20 67 69 76 | 65 6e 20 70 6f 69 6e 74 | the giv|en point|
|00001e90| 20 28 33 2c 20 30 29 20 | 6f 6e 20 74 68 65 20 6e | (3, 0) |on the n|
|00001ea0| 6f 72 6d 61 6c 20 74 6f | 20 67 65 74 20 61 6e 20 |ormal to| get an |
|00001eb0| 65 71 75 61 74 69 6f 6e | 20 66 6f 72 20 26 6c 74 |equation| for <|
|00001ec0| 3b 49 26 67 74 3b 61 26 | 6c 74 3b 2f 49 26 67 74 |;I>a&|lt;/I>|
|00001ed0| 3b 3a 20 26 6c 74 3b 21 | 26 6e 64 61 73 68 3b 20 |;: <!|– |
|00001ee0| 4d 41 54 48 0a 20 3c 21 | 2d 2d 20 4d 41 54 48 0a |MATH. <!|-- MATH.|
|00001ef0| 20 24 32 61 5e 33 20 2b | 20 61 20 2d 20 33 20 3d | $2a^3 +| a - 3 =|
|00001f00| 20 30 24 0a 20 2d 2d 3e | 0a 32 3c 49 3e 61 3c 2f | 0$. -->|.2<I>a</|
|00001f10| 49 3e 3c 53 55 50 3e 33 | 3c 2f 53 55 50 3e 20 2b |I><SUP>3|</SUP> +|
|00001f20| 20 3c 49 3e 61 3c 2f 49 | 3e 20 2d 20 33 20 3d 20 | <I>a</I|> - 3 = |
|00001f30| 30 0a 20 26 6e 64 61 73 | 68 3b 26 67 74 3b 0a 32 |0. &ndas|h;>.2|
|00001f40| 26 6c 74 3b 49 26 67 74 | 3b 61 26 6c 74 3b 2f 49 |<I>|;a</I|
|00001f50| 26 67 74 3b 26 6c 74 3b | 53 55 50 26 67 74 3b 33 |><|SUP>3|
|00001f60| 26 6c 74 3b 2f 53 55 50 | 26 67 74 3b 20 2b 20 26 |</SUP|> + &|
|00001f70| 6c 74 3b 49 26 67 74 3b | 61 26 6c 74 3b 2f 49 26 |lt;I>|a</I&|
|00001f80| 67 74 3b 20 2d 20 33 20 | 3d 20 30 2e 20 20 54 68 |gt; - 3 |= 0. Th|
|00001f90| 65 20 73 6f 6c 75 74 69 | 6f 6e 20 26 6c 74 3b 49 |e soluti|on <I|
|00001fa0| 26 67 74 3b 61 26 6c 74 | 3b 2f 49 26 67 74 3b 20 |>a<|;/I> |
|00001fb0| 3d 20 31 20 69 73 20 60 | 60 6f 62 76 69 6f 75 73 |= 1 is `|`obvious|
|00001fc0| 27 27 2e 20 20 20 42 75 | 74 20 6d 6f 76 65 20 74 |''. Bu|t move t|
|00001fd0| 68 65 20 70 6f 69 6e 74 | 20 28 33 2c 20 30 29 20 |he point| (3, 0) |
|00001fe0| 74 6f 20 61 6e 6f 74 68 | 65 72 20 70 6f 73 69 74 |to anoth|er posit|
|00001ff0| 69 6f 6e 20 61 6e 64 20 | 69 74 20 69 73 20 61 6c |ion and |it is al|
|00002000| 6d 6f 73 74 20 63 65 72 | 74 61 69 6e 20 74 68 61 |most cer|tain tha|
|00002010| 74 20 74 68 65 20 63 6f | 72 72 65 73 70 6f 6e 64 |t the co|rrespond|
|00002020| 69 6e 67 20 63 75 62 69 | 63 20 77 69 6c 6c 20 6e |ing cubi|c will n|
|00002030| 6f 74 20 68 61 76 65 20 | 61 6e 79 20 60 60 6e 69 |ot have |any ``ni|
|00002040| 63 65 27 27 20 72 6f 6f | 74 73 26 61 6d 70 3b 6d |ce'' roo|ts&m|
|00002050| 64 61 73 68 3b 79 6f 75 | 20 63 6f 75 6c 64 20 73 |dash;you| could s|
|00002060| 74 69 6c 6c 20 75 73 65 | 20 50 6c 6f 74 20 61 6e |till use| Plot an|
|00002070| 64 2f 6f 72 20 54 61 62 | 6c 65 20 74 68 6f 75 67 |d/or Tab|le thoug|
|00002080| 68 2e 0a 0a 3c 50 3e 0a | 26 6c 74 3b 50 26 67 74 |h...<P>.|<P>|
|00002090| 3b 0a 0a 3c 50 3e 0a 26 | 6c 74 3b 44 49 56 20 63 |;..<P>.&|lt;DIV c|
|000020a0| 6c 61 73 73 3d 22 43 45 | 4e 54 45 52 22 26 67 74 |lass="CE|NTER">|
|000020b0| 3b 26 6c 74 3b 41 20 49 | 44 3d 22 32 34 22 26 67 |;<A I|D="24"&g|
|000020c0| 74 3b 26 6c 74 3b 2f 41 | 26 67 74 3b 0a 26 6c 74 |t;</A|>.<|
|000020d0| 3b 54 41 42 4c 45 26 67 | 74 3b 0a 26 6c 74 3b 43 |;TABLE&g|t;.<C|
|000020e0| 41 50 54 49 4f 4e 20 63 | 6c 61 73 73 3d 22 42 4f |APTION c|lass="BO|
|000020f0| 54 54 4f 4d 22 26 67 74 | 3b 26 6c 74 3b 53 54 52 |TTOM">|;<STR|
|00002100| 4f 4e 47 26 67 74 3b 46 | 69 67 75 72 65 3a 26 6c |ONG>F|igure:&l|
|00002110| 74 3b 2f 53 54 52 4f 4e | 47 26 67 74 3b 0a 44 69 |t;/STRON|G>.Di|
|00002120| 61 67 72 61 6d 20 66 6f | 72 20 70 72 6f 62 6c 65 |agram fo|r proble|
|00002130| 6d 20 34 2e 26 6c 74 3b | 2f 43 41 50 54 49 4f 4e |m 4.<|/CAPTION|
|00002140| 26 67 74 3b 0a 26 6c 74 | 3b 54 52 26 67 74 3b 26 |>.<|;TR>&|
|00002150| 6c 74 3b 54 44 26 67 74 | 3b 26 6c 74 3b 49 4d 47 |lt;TD>|;<IMG|
|00002160| 0a 20 53 54 59 4c 45 3d | 22 68 65 69 67 68 74 3a |. STYLE=|"height:|
|00002170| 20 32 38 36 2e 37 36 65 | 78 3b 20 22 20 53 52 43 | 286.76e|x; " SRC|
|00002180| 3d 22 69 6d 67 34 2e 70 | 6e 67 22 0a 20 41 4c 54 |="img4.p|ng". ALT|
|00002190| 3d 22 0a 3c 44 49 56 20 | 63 6c 61 73 73 3d 22 43 |=".<DIV |class="C|
|000021a0| 45 4e 54 45 52 22 3e 0a | 3c 49 4d 47 0a 20 53 54 |ENTER">.|<IMG. ST|
|000021b0| 59 4c 45 3d 22 68 65 69 | 67 68 74 3a 20 33 31 34 |YLE="hei|ght: 314|
|000021c0| 2e 30 30 65 78 3b 20 22 | 20 53 52 43 3d 22 69 6d |.00ex; "| SRC="im|
|000021d0| 67 34 2e 70 6e 67 22 0a | 20 41 4c 54 3d 22 5c 62 |g4.png".| ALT="\b|
|000021e0| 65 67 69 6e 7b 66 69 67 | 75 72 65 7d 5c 65 70 73 |egin{fig|ure}\eps|
|000021f0| 66 79 73 69 7a 65 20 31 | 31 30 70 74 0a 5c 63 65 |fysize 1|10pt.\ce|
|00002200| 6e 74 65 72 6c 69 6e 65 | 7b 5c 65 70 73 66 66 69 |nterline|{\epsffi|
|00002210| 6c 65 7b 61 6e 73 31 70 | 34 2e 65 70 73 7d 7d 0a |le{ans1p|4.eps}}.|
|00002220| 5c 65 6e 64 7b 66 69 67 | 75 72 65 7d 22 3e 0a 3c |\end{fig|ure}">.<|
|00002230| 2f 44 49 56 3e 22 26 67 | 74 3b 26 6c 74 3b 2f 54 |/DIV>"&g|t;</T|
|00002240| 44 26 67 74 3b 26 6c 74 | 3b 2f 54 52 26 67 74 3b |D><|;/TR>|
|00002250| 0a 26 6c 74 3b 2f 54 41 | 42 4c 45 26 67 74 3b 0a |.</TA|BLE>.|
|00002260| 26 6c 74 3b 2f 44 49 56 | 26 67 74 3b 0a 0a 3c 50 |</DIV|>..<P|
|00002270| 3e 0a 26 6c 74 3b 50 26 | 67 74 3b 0a 26 6c 74 3b |>.<P&|gt;.<|
|00002280| 2f 4c 49 26 67 74 3b 0a | 26 6c 74 3b 4c 49 26 67 |/LI>.|<LI&g|
|00002290| 74 3b 46 6f 6c 6c 6f 77 | 69 6e 67 20 75 70 20 6f |t;Follow|ing up o|
|000022a0| 6e 20 70 72 65 76 69 6f | 75 73 20 70 72 6f 62 6c |n previo|us probl|
|000022b0| 65 6d 73 3a 0a 0a 3c 50 | 3e 0a 26 6c 74 3b 50 26 |ems:..<P|>.<P&|
|000022c0| 67 74 3b 0a 0a 3c 50 3e | 0a 26 6c 74 3b 4f 4c 26 |gt;..<P>|.<OL&|
|000022d0| 67 74 3b 0a 26 6c 74 3b | 4c 49 26 67 74 3b 46 72 |gt;.<|LI>Fr|
|000022e0| 6f 6d 20 61 20 70 6f 69 | 6e 74 20 65 78 74 65 72 |om a poi|nt exter|
|000022f0| 69 6f 72 20 74 6f 20 74 | 68 65 20 70 61 72 61 62 |ior to t|he parab|
|00002300| 6f 6c 61 20 74 68 65 72 | 65 20 77 6f 75 6c 64 20 |ola ther|e would |
|00002310| 61 6c 77 61 79 73 20 62 | 65 20 65 78 61 63 74 6c |always b|e exactl|
|00002320| 79 20 74 77 6f 20 74 61 | 6e 67 65 6e 74 20 6c 69 |y two ta|ngent li|
|00002330| 6e 65 73 2c 20 62 75 74 | 20 66 72 6f 6d 20 61 6e |nes, but| from an|
|00002340| 20 69 6e 74 65 72 69 6f | 72 20 70 6f 69 6e 74 20 | interio|r point |
|00002350| 74 68 65 72 65 20 77 6f | 75 6c 64 20 6e 6f 74 20 |there wo|uld not |
|00002360| 62 65 20 61 6e 79 20 28 | 74 68 65 20 63 6f 72 72 |be any (|the corr|
|00002370| 65 73 70 6f 6e 64 69 6e | 67 20 71 75 61 64 72 61 |espondin|g quadra|
|00002380| 74 69 63 20 65 71 75 61 | 74 69 6f 6e 20 77 6f 75 |tic equa|tion wou|
|00002390| 6c 64 20 68 61 76 65 20 | 63 6f 6d 70 6c 65 78 20 |ld have |complex |
|000023a0| 69 6e 73 74 65 61 64 20 | 6f 66 20 72 65 61 6c 20 |instead |of real |
|000023b0| 72 6f 6f 74 73 29 2e 0a | 26 6c 74 3b 2f 4c 49 26 |roots)..|</LI&|
|000023c0| 67 74 3b 0a 26 6c 74 3b | 4c 49 26 67 74 3b 41 67 |gt;.<|LI>Ag|
|000023d0| 61 69 6e 2c 20 74 68 65 | 20 61 6e 73 77 65 72 20 |ain, the| answer |
|000023e0| 69 73 20 79 65 73 20 66 | 6f 72 20 65 78 74 65 72 |is yes f|or exter|
|000023f0| 69 6f 72 20 70 6f 69 6e | 74 73 2c 20 62 75 74 20 |ior poin|ts, but |
|00002400| 66 6f 72 20 69 6e 74 65 | 72 69 6f 72 20 70 6f 69 |for inte|rior poi|
|00002410| 6e 74 73 20 74 68 65 72 | 65 20 77 6f 75 6c 64 20 |nts ther|e would |
|00002420| 62 65 20 74 68 72 65 65 | 20 6e 6f 72 6d 61 6c 73 |be three| normals|
|00002430| 21 0a 0a 3c 50 3e 0a 26 | 6c 74 3b 2f 4c 49 26 67 |!..<P>.&|lt;/LI&g|
|00002440| 74 3b 0a 26 6c 74 3b 2f | 4f 4c 26 67 74 3b 0a 0a |t;.</|OL>..|
|00002450| 3c 50 3e 0a 26 6c 74 3b | 50 26 67 74 3b 0a 26 6c |<P>.<|P>.&l|
|00002460| 74 3b 2f 4c 49 26 67 74 | 3b 0a 26 6c 74 3b 2f 4f |t;/LI>|;.</O|
|00002470| 4c 26 67 74 3b 0a 26 6c | 74 3b 48 52 26 67 74 3b |L>.&l|t;HR>|
|00002480| 0a 0a 3c 50 3e 0a 26 6c | 74 3b 2f 42 4f 44 59 26 |..<P>.&l|t;/BODY&|
|00002490| 67 74 3b 0a 26 6c 74 3b | 2f 48 54 4d 4c 26 67 74 |gt;.<|/HTML>|
|000024a0| 3b 0a 0a 3c 48 52 3e 0a | 0a 3c 2f 42 4f 44 59 3e |;..<HR>.|.</BODY>|
|000024b0| 0a 3c 2f 48 54 4d 4c 3e | 0a |.</HTML>|. |
+--------+-------------------------+-------------------------+--------+--------+